Polynomial time computable real functions
نویسندگان
چکیده
In this paper, we study computability and complexity of real functions. We extend these notions, already defined for functions over closed intervals or over the real line to functions over particular real open sets and give some results and characterizations, especially for polynomial time computable functions. Our representation of real numbers as sequences of rational numbers allows us to implement real functions in a stream language. We give a notion of second order polynomial interpretation for this language to guarantee polynomial time complexity.
منابع مشابه
Algebraic Characterization of Complexity Classes of Computable Real Functions
Several algebraic machine-independant characterizations of computable functions over the reals have been obtained recently. In particular nice connections between the class of computable functions (and some of its sub and sup-classes) over the reals and algebraically defined (suband sup-) classes of R-recursive functions à la Moore 96 have been obtained. We provide in this paper a framework tha...
متن کاملDifferentiability of polynomial time computable functions
We show that a real z is polynomial time random if and only if each nondecreasing polynomial time computable function is differentiable at z. This establishes an analog in feasible analysis of a recent result of Brattka, Miller and Nies, who characterized computable randomness in terms of differentiability of nondecreasing computable functions. Further, we show that a Martin-Löf random real z i...
متن کاملOn the Effective Jordan Decomposability
The classical Jordan decomposition Theorem says that any real function of bounded variation can be expressed as a difference of two increasing functions. This paper explores the effective version of Jordan decomposition. We give a sufficient and necessary condition for those computable real functions of bounded variation which can be expressed as a difference of two computable increasing functi...
متن کاملPolynomial differential equations compute all real computable functions on compact intervals ?
In the last decade, the field of analog computation has experienced renewed interest. In particular, there have been several attempts to understand which relations exist between the many models of analog computation. Unfortunately, most models are not equivalent. It is known that Euler’s Gamma function is computable according to computable analysis, while it cannot be generated by Shannon’s Gen...
متن کاملComputable Function Representations Using Effective Chebyshev Polynomial
We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions. Keywords—Approximation Theory, Chebyshev Polynomial, Computable Functions, Comp...
متن کامل